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First:  What is your background?

Think about where you fit in these lists:

Graduate student

Post Doc

Beyond Post Doc

Math

Physics

Chemistry

Biology

Medicine



• Remind you how much you already know -- lenses, crystals

• Show why crystals give diffraction spots.

• Develop the idea of “The Reciprocal Lattice”

• Give some idea how we might actually measure diffraction 

data

• Show how, given a crystal, we can calculate the diffraction 

pattern

• Conversely, show how to calculate the structure from the 

diffraction

• Describe the importance of symmetry to diffraction

• Outline the structure-solving methods -- heavy atoms and 

MADness

Outline for the Lecture



• Firstly, we’re going to try to understand how things 

work.

• Then we’ll try to use that understanding to figure 

out how to solve a few problems one might meet in 

doing crystallography.

• Perhaps then you’ll be able to solve many

problems in crystallography.

The idea here:



• We’re not going to spend time working through how to 

solve problems in crystallography.

• Instead, we’re going to try to understand how things work.

• If we can understand, then we can figure out how to solve 

almost any problem.

The idea here:
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• Show why crystals give diffraction spots.

• Develop the idea of “The Reciprocal Lattice”

• Give some idea how we might actually measure diffraction 

data

• Show how, given a crystal, we can calculate the diffraction 

pattern

• Conversely, show how to calculate the structure from the 

diffraction

• Describe the importance of symmetry to diffraction

• Outline the structure-solving methods -- heavy atoms and 
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Creation of a molecule’s image from a crystal has 

similarities to creating an image with a lens
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You already understand a little about how lenses work

Two rays leaving from the same 

point end up at the same place
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Maybe you didn’t know …

…end up together in this plane
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plane

All rays leaving in 

the same direction… There’s Phase 

Interference at these 

two planes, but phases 

are lost when we 

measure diffraction 

intensity.



We use a crystal to give us diffraction, and 

computation to do the rest of the work of the lens.
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Fourier Synth. 

Takes care of 

interference.



We’ll see that the diffraction pattern 

gives information about the 

dimensions and periodicity of each 

view of the object.



Why do we use x-rays?

• The features we’re trying to see are on the 

order of the distance between atoms: 10-10

meters.  

• To “see” the atoms, we need to use light 

with a wavelength that is near to this 

distance.  

• X-Rays (x-ray light) have a suitable 

wavelength.

• The x-rays are scattered by the electrons on 

the atoms so what we see is the electrons.



What is a crystal?

• A crystal is a periodic arrangement of objects 

(molecules) repeating in two or three dimensions.  

• The repeating unit is a parallelepiped (in 3-D) or 

a parallelogram (in 2-D).

• A crystal of a typical protein will be half a mm on 

a side and contain 1015 molecules.



Here’s one choice of repeating unit 

in this crystal made of apple trees

Parallelograms 

defining crystal 

repeat.



We could make a different 

choice of repeating unit

Other 

parallelograms 

defining crystal 

repeat.

In both cases the repeating unit (Unit Cell) 

has the same AREA, or VOLUME for a 

three-dimensional crystal.



Why do we use crystals when we’d 

like to see one molecule?

• We can’t focus enough x-rays into a small enough 

volume to “see” a molecule.  We use lots of 

molecules in a crystal to get a bigger target.

• Even if we could focus them, the x-rays would 

burn up the molecule.

• Even if that would work, we don’t have a lens

for the x-rays.

• The crystal amplifies the signal, and gives us a 

way to get the phase information back.



Let’s return to our crystal made of 

apple trees, and define “planes” in 

that crystal.



We can slice the crystal at lattice points: 

all planes pass through the same apple



And at other angles. Notice: 

• planes all pass by the same apple; 

• the “stuff” between pairs of planes is always the same.



And one more time...



• Remind you how much you already know -- lenses, crystals

• Show why crystals give diffraction spots.

• Develop the idea of “The Reciprocal Lattice”

• Give some idea how we might actually measure diffraction 

data

• Show how, given a crystal, we can calculate the diffraction 

pattern

• Conversely, show how to calculate the structure from the 

diffraction

• Describe the importance of symmetry to diffraction

• Outline the structure-solving methods -- heavy atoms and 
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In phase
In phase

Diffraction – Let’s do a thought experiment.  

• Think of the material between the lattice planes as just two 

atoms, suspended in space.

• Send a beam of x-rays at these atoms.  

• If the angle is just right for the wavelength and distance 

between the atoms, the scattered x-rays will be in phase, and 

they will interfere constructively.  



In phase
Not in phase

On the other hand, if things are not right, 

they won’t be in phase, and there will be no 

constructive interference, no diffraction.



Now, as we think of the stuff between the lattice 

planes as being like each of those two atoms, we try to 

write a law that will show conditions to get diffraction.



Now get rid of 

the orchard...



Wavelength

The wave travels exactly one wavelength to 

take the little detour

Bragg’s Law describes diffraction as reflection from planes

Waves come in 

“in phase.”

And waves 

exit in phase



See: www.journeysunysbedu/ProjectJava/Bragg/home.html

Watch what happens as we go from maximum 

to minimum diffracting position and back.



















(2, 1, 2)

We have a way to “index” planes in a paralellepiped to 

give a unique description of them.

The indices are 

the number of 

pieces into 

which each 

plane cuts the 

axis of the “unit 

cell” of the 

crystal -- the 

smallest 

repeating unit 

that makes up 

the crystal.

Notice: By the way we define these planes, for every family of 

planes, at least one of them passes through the origin of the unit 

cell.  

The unit cell is a parallelepiped.  Every corner is an origin of a unit 

cell, since all are identical.
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To relate the planes in the crystal lattice to the points in 

the diffraction pattern, we make Ewald’s construction.

We have that sin q = (OA/2)/(1/l) = lOA/2, or l = 2 sin q/OA. 

Compare this to Bragg’s Law: l = 2d sin q.  

We take 1/OA as being equivalent to d. 

Notice the reflection plane, and that OA is perpendicular to it.  

The Ewald construction exists in 

a space with dimensions of 

reciprocal distance!

This defines Reciprocal Space!

The vector of length 1/d is 

perpendicular to the reflecting 

plane that lies q from the “rays.”

The Ewald Sphere



First, let’s understand what’s happening in the real 

experiment, then we’ll try to understand the 

reciprocal business.

A

Reflecting

Plane

Bragg’s Law is obeyed: 

diffraction occurs  when 

a vector of length 1/dhkl, 

which is perpendicular 

to the lattice planes 

(hkl), touches the 

Ewald sphere of radius 

1/ .

x-rays

A

F



A little trigonometry:

A

A / F = tan(2θ)

λ = 2d sin(θ)

We can get the 

d-spacing for 

the reflection.

x-rays

A

F

We’ll call 

this vector 

s

Remember, 

this is a 

sphere.



How can we define this vector that is perpendicular to 

the Bragg plane, and has a length that is the reciprocal 

of the distance between the planes?

We’ll define the edges of a unit cell with three vectors.  

Start with a and b.  We know that the cross product of two 

vectors lies perpendicular to the plane of the two vectors.

This is the direction we want.  The amplitude of a b is the

area of the parallelogram defined by the vectors:

α

a

b

ab = ab sinα

Area = |ab|



We’ve described the base of the unit cell of the crystal by 

two vectors a and b, and the area of the base is the amplitude 

of the cross product of a and b. 

Now we’ll include the third vector c. We want to know the 

spacing d(001), between the ab planes [the (001) lattice planes]. It 

must be the projection of c on the vector ab.  We know that we 

get the product of the projection of one vector on another 

with the vector dot product: (ab)∙c.  

α
a

b

ab

c
d(001) (001) plane

Area = |ab|



So ab∙c, known as a vector triple product, is the area of ab

times d(001), the spacing between the planes.  That, of course is 

the Volume of the unit cell.  If we divide this quantity into the 

area, we get the reciprocal of the spacing, which is what we 

want!!

α
a

b

ab

c
d(001)

1/d (001) = Area/Volume = |s001| = |a b / a×b∙c| = c*

Area = |ab|



So the reciprocal lattice vector that represents the (001) 

planes is 

s001 =  ab / ab∙c  and   |s001| = 1/d(001)

We define each axial reciprocal lattice vector as a reciprocal 

unit cell axis: 

s100 = a*   s010 = b*   s001 = c* 

a

b

ab

c
d(001)



Let’s be sure this is perfectly clear:

We define each principal reciprocal lattice vector 

as a reciprocal unit cell axis: 

a* = s100 =  bc / ab∙c  and   |s100| = 1/d(100)

b* = s010 =  ca / ab∙c  and   |s010| = 1/d(010)

c* = s001 =  ab / ab∙c  and   |s001| = 1/d(001)



lattice plane (hkl) 

touches the Ewald 

sphere of radius 1/ .

So we need not think 

about Bragg planes 

again, we think only 

of reciprocal-lattice 

vectors and the Ewald 

Sphere of reflection.

x-rays

A

F

shkl

These allow us to define reciprocal-lattice vectors: 

shkl = ha* + kb* + lc* 

Bragg’s Law is obeyed – diffraction will occur – when 

the s vector of length 1/dhkl that is perpendicular to the 



Remember our comparison between 

diffraction and lens imaging…

…end up together in this plane
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All rays leaving in 

the same direction… The diff’n plane exists 

in reciprocal space, 

the object and image 

are in real space



Plate 2 from Taylor and Lipson -- Optical Transforms

Now we use the Taylor and Lipson figures to see how the 

contents of the crystal relate to the diffraction pattern.

crystal diffraction
Coordinates of points 

are “indices.”

Notice (1) 

The sym-

metry, and 

(2) how the 

continuous 

diffraction 

pattern of 

one molec-

ule (b) is 

“sampled” 

by the lat-

tice of dif-

fraction 

points.  



Confirm that the 

vectors 

perpendicular to 

the Crystal-

Lattice planes are 

parallel to the 

Reciprocal 

Lattice vectors, 

and that the 

reciprocal 

distances make 

sense.

Crystal –

Real Lattice

Diffraction –

Reciprocal 

Lattice

Do we understand the real/reciprocal lattice idea?
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pattern
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diffraction

• Describe the importance of symmetry to diffraction

• Outline the structure-solving methods -- heavy atoms and 

MADness
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Remember the geometry -- if the Bragg

planes lie angle from the incident x-ray 

beam, the total diffraction angle will be 2 .  

We can make an instrument to exploit that 

geometry.



And Remember the objective – We must 

view the molecule from every direction to 

recreate a three-dimensional image:

• We must obtain diffraction from all of the 

Bragg planes;

• We must sample all of the reciprocal lattice.



My first data were collected with a Weissenberg 

Camera 47-yrs ago.

A complicated 

machine to simplify 

our view of 

reciprocal space.

One rotates the 

crystal around a real 

lattice vector.



The Weissenberg photograph gives a wonderfully 

distorted, but organized, view of reciprocal space.

(h0l) data



Martin Buerger devised a camera geometry 

that preserved the shape of reciprocal space.

It’s an even 

more 

complicated 

machine to 

simplify our view 

of reciprocal 

space further. 

Mount x-tals 

with a real

crystal axis 

parallel to the 

beam.



An antique precession photo of Chymotripsin, courtesy of David M Blow

The precession 

photograph

allows us to 

view the 

diffraction 

pattern of the 

crystal lattice as 

an undistorted 

pattern of spots.



How can we learn something about the crystal unit 

cell from a precession photo?

It’s easy, because the geometry makes the image undistorted.

So from this we have:

x-rays

F

B/F = (1/d)/(1/λ) = λ/d(hkl)

Or

d(hkl) = λF/B

Remember, it’s different 

from this, with the film 

perpendicular to the 

beam.

A

A / F = tan(2θ)

λ = 2d sin(θ)

x-rays

A

F



Notice the 

counterweights, the 

beam stop, and the 

screen to select only 

one reciprocal lattice 

layer.

Cameras very similar 

to this were used 51-

yrs ago to solve the 

first protein crystal 

structures.

Bram Schierbeek, Bruker-AXS



The automated Eulerian cradle decreased the labor, but 

still one measured reflections one at a time. (45yrs ago)



Bram Schierbeek, Bruker-AXS

Uli Arndt and Alan Wonacott invented the automated 

rotation camera.  Still x-ray film, but very much more 

efficient. 

(~36yrs ago)



Another Uli Arndt invention was a video-based detector

The screen was small, but it was very sensitive and could read out 

continuously – the x-tal just kept rotating as images came out. 

(23yrs ago)

Bram Schierbeek

Bruker-AXS



An important advance was photoluminescent imaging plates.  

MAR research, followed by Rigaku, made a successful camera 

that worked like electronic x-ray film, but much better. (21 yrs)



12keV X-ray 

PHOSPHOR  

10 e- 35 lph 650 lph 

SCREEN  FIBEROPTIC TAPER 

CCD 

25 mm 

The advance that made possible our modern detectors 

was made by Ed Westbrook, Sol Gruner, and others: 

bonding of a charge-coupled device to a fiber-optic taper 

with an x-ray sensitive phosphor in front. (17yrs ago)



Several of these can be bonded together to make a large 

detector…  (13yrs ago)



Like this one, made 

for us by Walter 

Phillips



And the modern commercial versions are large, 

fast, and very accurate.  (8yrs ago)

Detectors like these are the basis for 

modern, high-throughput crystallography!



This is the next generation. It is noise free, and can 

produce images at 10 per second.  (1yr ago)

This detector will be supplanted in 2-3 years by one that 

frames at 10,000 Hz!

The Pilatus 6M 
(six million pixels)

Made by Dectris, a spin-

off of the Paul Scherer 

Inst. (Switzerland’s 

answer to Brookhaven 

National Laboratory)



Z. Dauter

The planes of 

spots in reciprocal 

space appear as circles 

of spots on an area-

sensitive x-ray 

detector (film, IP, 

CCD-based, etc.)

Look at how the reflections are generated in 

the diffraction pattern.



Z. Dauter

As the 

crystal is 

rotated, the 

circles are 

extended into 

“lunes”



Rotation sweeps out a strangely-

shaped volume.  However...

• Many r.l. points will be 

recorded during a single short 

rotation. 

• Contiguous rotations will cover 

much of the reciprocal lattice.

• The “camera” is simple: an 

axis, a film (or electronic 

detector), and a shutter.

• It’s easy to substitute a range of 

detectors.



Let’s look at a series of images from a CCD-

based detector, each representing one degree 

of crystal rotation









































The position of the reciprocal-lattice points can 

be nicely related to the coordinates

of reflections on the film/detector



• Remind you how much you already know -- lenses, crystals

• Show why crystals give diffraction spots.

• Develop the idea of “The Reciprocal Lattice”

• Give some idea how we might actually measure diffraction 

data

• Show how, given a crystal, we can calculate the 

diffraction pattern

• Conversely, show how to calculate the structure from the 

diffraction

• Describe the importance of symmetry to diffraction

• Outline the structure-solving methods -- heavy atoms and 

MADness

Outline for the Lecture



Plate 2 from Taylor and Lipson -- Optical Transforms

Now we use the Taylor and Lipson figures to see how the 

contents of the crystal relate to the diffraction pattern.

crystal diffraction
Coordinates of points 

are “indices.”

Notice (1) 

The sym-

metry, and 

(2) how the 

continuous 

diffraction 

pattern of 

one molec-

ule (b) is 

“sampled” 

by the lat-

tice of dif-

fraction 

points.  



Confirm that the 

vectors 

perpendicular to 

the Crystal-

Lattice planes are 

parallel to the 

Reciprocal 

Lattice vectors, 

and that the 

reciprocal 

distances make 

sense.

Crystal –

Real Lattice

Diffraction –

Reciprocal 

Lattice

Review: Do we understand the real/reciprocal 

lattice idea?



Plate 26 from Taylor and Lipson -- Optical Transforms

Here’s another (2D) example with an asymmetric motif

Each spot 

represents the 

intensity of 

reflection 

from one set 

of planes 

cutting 

through the 

crystal

Note the 

inversion 

symmetry



To calculate the structure factor we need to think of wave-like 

x-rays interacting with atoms. Remember that we can use an 

x/y graph to represent the phase and amplitude of a wave:

And then we describe the “wave” as a complex number:

f = Ao{cos + i sin }  and

f = Ao ei

Ao

0 2

Ao

Ar

Ai

Phase 

angle 

i

r



Scattering from

lattice planes

Atomic structure factors  

add as complex numbers, 

or vectors.

• The amplitude of scattering depends on the 

number of electrons on each atom.

• The phase depends on the fractional distance it 

lies from the lattice plane.

Randy Read



We can write an expression to describe this 

diffraction from atoms in a crystal

And the structure factor for a crystal of atoms will be:

The scattering amplitude (the structure factor) 

for an individual atom is going to be: The hkl describe 

the Bragg Planes

The 2 and the fractional 

coordinates xi take care of 

the phase angle

The strength of scattering from each atom

The scattering power of the 

atom, ~ the number of electrons

Notice that λ and the 

unit cell parameters are 

NOT part of this.



Does this expression for the 

Structure Factor make sense?

Try it with an example: a crystal with 

three atoms.  What are the phases of 

scattering from each atom?   Use this

For these planes, (h, k) = (3, 2)

For atom 1.  x, y = 2/3, 0:  So 2p(hx + ky) = 2p(3 x 2/3 + 2 x 0) = 4p = 0

The atom is on the plane, so this makes sense.

For atom 2.  x, y = 0, 1/2:  So 2p(hx + ky) = 2p(3 x 0 + 2 x 1/2) = 2p = 0

Again, the atom is on the plane, so this makes sense.

For atom 3.  x, y = 1/3, 1/4:  So 2p(hx + ky) = 2p(3 x 1/3 + 2 x 1/4) = 3p = p

The atom lies half-way between two planes, so this makes sense.



We can see how the structure factors 
from individual atoms add up.

Wave                                Complex Vector           Complex number

f1 = 1 + 0i 

f2 = 0 + 0.5i

f3 = -0.2 + 0.2i 

fsum = 0.8 + 0.7i



See also:

http://www.ysbl.york.ac.uk/~cowtan/

sfapplet/sfintro.html Structure Factor Tutorial

fourier/fourier.html Book of Fourier

http://www.ysbl.york.ac.uk/~cowtan/
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Q: How do we perform the second 

interference step in the functioning of the lens 

-- to reconstruct the image of the original 

object?

A: We will have to calculate it.

Q: How will we represent that object? 

A: The x-rays are scattered from electrons in 

the atoms of the crystal.

Therefore: for us, the “image” is going to be a 

representation of the electron density.



The structure factor and the electron density 
function are Fourier inverses of one another

• Note that the electron density is real but the structure factor 

is complex.

• The phase information must be included in the Fourier 

synthesis that produces the electron density!  

• This has to be recovered, because the diffraction 

experiment measures the intensity of diffraction, which is 

the square of the structure factor:

I = F2

Visible

Lens
Object Image

Diffraction

plane

Image

plane

There’s Phase 

Interference at these 

two planes. F

ρ



How does Fourier synthesis work?

Can we produce a trial structure and see how 

waves can be summed to give this structure 

back?



In the Fourier Synthesis, just a few waves suffice to give a 

reasonable approximation to the original pattern



What is the concept of 

“resolution?”

Here is the Fourier 

synthesis function:

When the limits of the 

summation are not so 

great, information is 

lost in the synthesized 

structure.

We say that the 

“resolution” equals the 

d-spacing of the 

smallest Bragg planes.



Resolution: The d-spacing of the highest 

order Bragg planes included in the Fourier 

synthesis.       Small d-spacing is good.

1.0 Ång (10,000 refl’s) 1.8 Ång (1700 refl’s)

3.0 Ång (370 refl’s) 4.0 Ång (160 refl’s) Graphics by 

Phil Evans



Another example.

The famous Taylor 

and Lipson rubber 

ducky.



• Remind you how much you already know -- lenses, crystals

• Show why crystals give diffraction spots.
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Outline for the Lecture



Symmetry of crystals

We’ll take some of our examples 

from David Blow’s book.

Symmetry: An operation of 

rotation, translation, inversion,  

mirroring, or some combination 

of these that takes an object back 

into itself.

• The simplest symmetry in a crystal 

is repetition.

• The repeated motif may have its 

own symmetry.



You know symmetry when you see it!

Graphics by M.C. Escher
http://www.mcescher.com/Gallery/gallery-

symmetry.htm



Can we identify symmetry elements?

Graphics by M.C. Escher



What about here?

Graphics by M.C. Escher



And here?

Graphics by M.C. Escher



And here?

Graphics by M.C. Escher



Symmetry Groups
Biological 

molecules are all 

chiral, or 

“handed,” so only 

rotation and 

translation 

symmetry are 

permissible.

Here are the 

combinations 

(groups) of 

symmetries one 

finds in 

macromolecular 

crystals.

Note: If one adds 

one axis, this 

generates a third.



What is a Group?

Elements in a group must obey certain properties:

• There must be the identity element.

• The combination of any two elements must generate 

an element of the group.  This is called closure.

• Number of elements = number of objects repeated = 

order of the group.

• Every element in the group must have an inverse.

3  32 = I

32 = 3-1

3  2 = 2’

Point Group is 32



The simplest crystal 

would contain a single 

asymmetric object 

repeated by translational 

repetition only, like our 

apple orchard.

Simple crystal symmetry



More complicated crystal symmetry

A crystal could contain a symmetric object, also 

repeated by translational repetition.

Notice: exactly 

two ducks in 

the unit cell

Three new 

symmetry 

operators are 

generated



Now let’s try it in three dimensions

Space Group P2: P = “primitive,”  2 = two-fold rotation axis.

We call this type of crystal monoclinic.  Order = 2.



Can we create an operation that combines 

two simple operations into a compound one?

Rotation 

then 

translation 

is a screw 

axis.

Mirroring 

then 

translation 

is a glide 

plane.



The Screw Axis

This symmetry operation 

is an m–fold rotation 

followed by a translation.

The translation is a n/m

translation along one of 

the major crystallo-

graphic directions, where 

m is the order of the 

major rotation axis: the 

mn screw axis. 

Here, it’s written 21 to 

represent the two-fold 

screw axis, and the 

translation is ½.



Centered Lattice
To make a new 

monoclinic lattice, shift

the motif at the origin 

along a diagonal to a new 

spot by a major fraction of 

the unit cell edges.

The lattice is “centered” 

because a new motif 

appears in the center of a 

face or of the body of the 

unit cell.

When P2 is “centered” to 

form C2, new 21 axes are 

formed.  

If one “centers” the B face, 

one simply generates a 

new P2 unit cell.



And higher symmetry
If one has two-fold axes in more than one direction, it must be 

three directions, and the axes must be perpendicular.  We call 

this orthorhombic.



And finally …

A three-fold axis will produce a trigonal crystal.  

Notice how the first three-fold axis creates two other 

three-folds with different environments.



Crystal 

System

Bravais 

Types

External Minimum 

Symmetry

Unit Cell 

Properties 

Triclinic P None a, b, c, al, be, ga,

Monoclinic P, C
One 2-fold axis, parallel b (b 

unique) 
a, b, c, 90, be, 90

Orthorhombic
P, I, F, 

C
Three perpendicular 2-folds a, b, c, 90, 90, 90

Tetragonal P, I One 4-fold axis, parallel c a, a, c, 90, 90, 90

Trigonal P*, R One 3-fold axis a, a, c, 90, 90, 120

Hexagonal P* One 6-fold axis a, a, c, 90, 90, 120

Cubic P, F, I
Four 3-folds along space 

diagonal
a, a, ,a, 90, 90, 90

The Seven Crystal Systems

The combination of symmetry elements yields only these forms

* Note: P(hexagonal) = P(trigonal)



The Bravais 

Lattices

Here are the 14 ways 

crystal lattices can be 

formed in the seven 

crystal systems.

The international convention in 

displaying these is to give a

down, b across, and c up or 

towards the viewer.



How many space groups?

• There are 230 space groups possible

• Only 65 of these employ only rotational symmetry 

(suitable for chiral molecules)

• Here are the most abundant observed in macromolecular

structures, 65% of the total:

Space group 

symbol
% of total

P212121 24.2

P3221 & P3121 15.2

P21 13.8

C2 6.1

P43212 5.4



And finally the icosahedral symmetry of 

spherical viruses



How does symmetry affect a 

diffraction pattern?

Symmetry affects a diffraction pattern in at least 

three ways:

Friedel’s Law – There’s an inversion centre in 

reciprocal space.

Laue Point Group – Diffraction has symmetry like 

that of the crystal.

Systematic absences – some of the symmetry 

operations erase some reflections.



Friedel’s Law: Bragg reflection from the 

front of the planes is the same as from the 

back.

(h, k, l)

(-h, -k, -l)





r

i F+

F-



Laue Point Group: The diffraction will adopt 

some of the symmetry of the crystal.

a

c
(h, k, l)

(-h, k, -l)

Let’s say the 

(1, 5, 2) and 

the (-1, 5 –2)



The Laue Point Group for a crystal is 

the rotational or mirror symmetry of the 

space group, plus Friedel’s Law.  For 

example:

P2 or P21  2/m

Produces a two-fold, a mirror 

perpendicular to it, and an inversion 

centre in the diffraction pattern / 

reciprocal space.  





Implication of this for the experiment:

One will need only to record 1/12 of reciprocal space 

to get complete data.  Sometimes one can record 

anomalously-related reflections on the same 

image.

Bijvoet

pair





z

-z



Also notice that for h 0 l data, there is NO imaginary part 

to the structure factor.  The structure factor is PURE 

REAL.



• Remind you how much you already know -- lenses, crystals

• Show why crystals give diffraction spots.

• Develop the idea of “The Reciprocal Lattice”

• Give some idea how we might actually measure diffraction 

data

• Show how, given a crystal, we can calculate the diffraction 

pattern

• Conversely, show how to calculate the structure from the 

diffraction

• Describe the importance of symmetry to diffraction

• Outline the structure-solving methods -- heavy atoms 

and MADness

Outline for the Lecture



How we solve structures? We must 

somehow estimate phases so we can 

perform the inverse Fourier transform.

• Isomorphous Replacement with heavy atoms

• MAD/SAD, a variant of IR

• Molecular replacement if we have a decent model.



Perutz’s Fundamental Idea: 

Isomorphous Replacement

FP = S Fatoms FPH = FP + FH FH

We find that, for some things, we can approximate  

|FH| with |FPH - FP|.  This often suffices for us to 

solve for the positions of the heavy atom as if it 

were a small-molecule structure.



So for some particular reflection and a particular 

heavy atom, we can begin to find the phase:

Knowing the position of the heavy atom allows us to 

calculate FH.  Then we use FP = FPH + (-)FH to show that the 

phase triangles close with a two-fold ambiguity, at G and 

at H.  There are several ways to resolve the ambiguity. 



One way to resolve the ambiguity is to use a 

second isomorphous heavy-atom derivative.



A second technique involves use of anomalous 

(resonant) scattering from a heavy atom.

In this case the resonance 

between the electrons on the 

heavy atom and the x-rays 

cause a phase and amplitude 

shift.  The symmetry of 

diffraction (from the front vs 

back of the Bragg planes) is 

broken.  Friedel’s Law is 

broken!  This can be measured 

and used.



One way to represent 

this resonance is plots of 

the shifts in the real part 

( f’) and imaginary part 

( f”) of the scattering of 

x-rays as a function of the 

photon energy.

From Ramakrishnan’s study of GH5 
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Excitation Scans

We can observe the f” by measuring 

the absorption of the x-rays by the 

atom.  We measure an “excitation” 

spectrum.  Often we us the 

fluorescence of the absorbing atom as 

a measure of absorptivity. 



One way to represent 

this resonance is plots of 

the shifts in the real part 

( f’) and imaginary part 

( f”) of the scattering of 

x-rays as a function of the 

photon energy.

From Ramakrishnan’s study of GH5 
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How to get f’?

The “real,” dispersive component is 

calculated from f” by the Kramers-

Kronig relationship.  Very roughly, it’s 

the negative first derivative of f”.



One way to represent 

this resonance is plots of 

the shifts in the real part 

( f’) and imaginary part 

( f”) of the scattering of 

x-rays as a function of the 

photon energy.

From Ramakrishnan’s study of GH5 
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The tunability of the synchrotron source 

allows us to choose precisely the energy 

(wavelength) we need.



Spectrum from Phizackerly, Hendrickson, et al. Study of Lamprey Haemoglobin.

One can see how to choose wavelengths to get 

large phase contrast for MAD phasing

*

*

*

*

**

*

*

*

*

*

*

Maximum 

Imaginary 

Signal

Maximum 

Real Signal



This Multiwavelength Anomalous Diffraction 

method often gives very strong phase 

information and is the source of many new 

structures.



How do we find the heavy-

atom positions that allow us 

to do MIR or MAD phasing?

There are generally two methods:

• Patterson-function methods

• Direct-phasing methods



Lindo Patterson saw that to interpret a diffraction 

pattern, he could correlate the electron density with 

itself:

This is the cosine transform of intensity!





This method is the basis of software 

such as HEAVY (Terwilliger)

About the same time (all of this happened only a “short” 

time ago, in the ’50s) David Harker saw a neat way to 

approach “solving” the Patterson function:



• You already knew something -- lenses, crystals.

• Crystals give ordered arrays of diffraction spots because the 

molecules are in ordered arrays.

• The Reciprocal Lattice is a mathematical metaphor for sets 

of lattice planes that obey Braggs’ Law.

• We actually measure diffraction data just by rotating the crystal

in the x-ray beam and recording diffraction, a lot like a CAT 

scan.

• Simple mathematics, which turns out to be the Fourier 

transform, allows us to calculate the diffraction pattern

• and, conversely, to calculate the structure from the diffraction.

• The use of  heavy atoms, and sometimes resonant effects, allow 

us to measure phases to solve the structures.

To Recapitulate



But I can tell you this, if you really 
want to learn it…

Teach It!


